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Achieving symmetric hohlraum radiation drive is an important aspect of indirectly driven inertial
confinement fusion experiments. However, when experimentally delivered laser powers deviate from
ideal conditions, the resultant radiation field can become asymmetric. Two situations in which this
may arise are random uncorrelated fluctuations in as-delivered laser power and laser beams that do
not participate in the implosion (either intentionally or unintentionally). Furthermore, laser-plasma
interactions in the hohlraum obfuscate the connection between laser powers and radiation drive. To
study the effect of these situations on drive symmetry, we develop a simplified model for crossed-
beam energy transfer, laser backscatter and plasma absorption that can be used in conjunction with
view factor calculations to expediently translate laser powers into three-dimensional capsule flux
symmetries. We find that crossed-beam energy transfer can alter both the statistical properties of
uncorrelated laser fluctuations and the impact of missing laser beams on radiation symmetry. A
method is proposed to mitigate the effects of missing laser beams.

I. INTRODUCTION

Understanding and controlling radiation drive symme-
try is an important aspect of achieving ignition and gain
in indirect drive laser inertial fusion experiments like
those at the National Ignition Facility (NIF) [1]. In NIF
experiments, 192 laser beams grouped into 48 4-beam
“quads” enter a hohlraum through the laser entrance
hole (LEH), propagate through the hohlraum cavity and
strike the inner hohlraum surface. X-rays emitted from
the hohlraum then bathe a capsule in radiation, caus-
ing ablation and compression [2, 3]. The symmetry of
this radiation field has a direct impact on the symme-
try of the implosion and the compressed fusion fuel, with
asymmetric implosions undesirable.

Achieving ignition and gain necessitates meeting strin-
gent requirements on capsule flux symmetry [4, 5]. This
means that the laser power must be delivered to within
a certain specification (usually a few percent). However,
as the lasers propagate from the LEH, they interact with
the plasma inside of the hohlraum. These laser plasma
interactions can alter the amount of flux delivered to the
hohlraum wall by a particular laser beam. Specifically,
crossed-beam energy transfer [6, 7] at the LEH, whereby
laser energy can be effectively transferred between beams
through plasma waves, can strongly affect drive and cap-
sule symmetry [8–10]. Other major processes that alter
the power in a beam include laser backscatter and plasma
absorption [11]. In other words, the power incident on
the LEH from a particular laser beam may not be the
power that beam delivers to the hohlraum wall.

In this article, we investigate the role certain laser-
plasma interactions play on capsule flux symmetries. To
that end, we develop a simplified model that captures
some of the effects of laser plasma interactions on laser

∗ peterson76@llnl.gov

powers, which can then be fed into view factor calcu-
lations of capsule flux. The model, lasertram, takes
NIF experimental laser powers and pointings and returns
powers adjusted to account for various physical processes.
These powers can be read directly into the view factor
code VisRad [12] and used to calculate the radiation field
inside of NIF hohlraums. In sum, the model marries the
important laser plasma interaction processes to view fac-
tor calculations for quick estimates of capsule flux.

At present, lasertram contains various models to in-
corporate power fluctuations, crossed-beam energy trans-
fer, laser backscatter and plasma absorption, which we
describe briefly in Section II (additional details appear in
the appendices). In Section III, we apply the new model
to the problems of random laser power fluctuations and
missing laser quads, proposing a scheme to limit the ef-
fects of dropping laser quads on capsule symmetry.

II. LASERTRAM: THE LASER TRANSFER MODEL

The view factor preprocessor, lasertram, adjusts NIF
laser quad powers to mimic physical processes thought
to be important in NIF experiments. It is written in
python and can be run on a desktop computer in a few
seconds. At present, lasertram can model the effects
of as-delivered power fluctuations, crossed-beam energy
transfer, laser backscatter and absorption. These pro-
cesses are assumed to work sequentially; that is for a

vector of initial laser quad powers ~P 0, the final power
delivered by those lasers to the hohlraum wall after laser-
plasma interactions and hydrodynamics is given by:

~P f = A · B · T · S · ~P 0. (1)

Each physical process is represented by a operator. The
first operator, S, represents a scaling of the initial powers.
This is useful for studying the effects of as-delivered per-
quad powers, such as from random experimental fluctua-
tions. The next operator, T , models crossed-beam energy
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transfer. Power losses due to backscatter and plasma ab-
sorption are represented by B and A respectively. Full
details on the operators appear in the Appendices.

After applying these operators, the final powers ~P f are
written along with the beam orientations (“pointings”)
in a format that can be imported into the view factor
code VisRad. Lasers in a quad are assumed to have the
same power, but each beam has its own pointing. In its
simplest operation with all operators equal to the identity
matrix, lasertram is an expedient method to transfer
experimentally delivered NIF powers and pointings into
VisRad.

The goal of lasertram is to study the effects of differ-
ent physical processes on laser power and radiation drive
on NIF capsules. One advantage of applying these oper-
ators sequentially is the ability to study the trickle-down
effects of different physical processes. As an example,
an increase in as-delivered quad power can be spread to
other quads through crossed-beam energy transfer. This
method also allows one to compare the effects of different
physical processes. Laser backscatter (B) can be mea-
sured [13], but the power that heats up the plasma and
sustains the hohlraum albedo (A) is less certain.

The final power in quad i, P f
i is related to its initial

power P 0
i by the absorption, backscatter, crossed-beam

transfer and scale factors:

P f
i = (1−Ai)(1−Bi)TiSiP

0
i . (2)

Equation 2 represents the entire lasertram procedure.
Quad i has its power scaled by a factor Si. It gains or
loses power via crossed-beam energy transfer, with an
effective multiplier of Ti. Finally, it loses fractions Bi

and Ai to backscatter and absorption before reaching the
hohlraum wall.

In general, the final power delivered to the hohlraum
wall will be less than delivered by the laser. As an ex-
ample, consider a 23.5-degree beam, k = 24 (integer sub-
scripts k represent the approximate polar angle of an en-
tire cone; see Appendix A), which we will not manually
scale (Sk = S24 = 1). The outer beams are often run to
transfer energy to the inner beams, so T24 ∼ 1.7. A typi-
cal amount of backscatter on inner quads is 30 percent, so
B24 ∼ 0.3. For an assumed albedo of 0.9 the inner beams
must lose about 85 percent of their post-backscatter en-
ergy for view factor calculations to agree with radiation
hydrodynamic simulations of hohlraum wall emission and
radiation temperature (see Appendix B), so A24 ∼ 0.85.
Equation 2 says that the final power on the inner quad is
only about 18 percent of its initial power. Typical num-
bers for outer quads (Tk = 0.7, Bk = 0, Ak = 0.4) calcu-
late a total coupling efficiency of 42 percent, even without
backscatter. The “missing” energy implied by Ak < 1 is
not missing, but rather is tied up in the hohlraum plasma.
In our calculations it is a parameter used to sustain an
assumed hohlraum albedo.

III. IMPLICATIONS OF EXPERIMENTAL
FLUCTUATIONS

We now apply lasertram to two experimentally rel-
evant problems. The first concerns random power fluc-
tuations across all quads; the second involves the loss of
a single laser quad in its entirety. These two realities
have the potential to impact capsule drive symmetry. In
both cases crossed-beam energy transfer has a nonlinear
effect, because in our saturated transport model (see Ap-
pendix A) the power transferred to quad i comes from the
coupling of quad i to all other quads j in some interaction
volume δz:

Pi(z + δz) = Pi(z) +
∑
j

ci,j(z)
√
Pi(z)Pj(z). (3)

If a quad is dropped, energy cannot be transferred to
or from it. Additionally, the effect of cross-correlations
between randomly fluctuating quads on power transfer is
unknown. In this section, we use lasertram to address
these questions.

Our test-bed is NIF shot N111215 at peak power (19.0
ns), which was a 1.45 MJ, 432 TW DT implosion. In-
formed by the calibration in Appendix B, we assume
an albedo of 0.9 for the view factor calculations and
set Bin = 0.3, Bout = 0, Ain = 0.85 and Aout = 0.4,
where “in” and “out” represent values for all inner or
outer cones. As mentioned in Appendix B, the backscat-
ter values are representative of typical measurements,
and the absorption values are such that the view fac-
tor calculated radiation temperatures and inner/outer
power fraction on the hohlraum wall agrees with radi-
ation hydrodynamic simulations. We will also use the
one- dimensional crossed-beam transfer model, Eq. 3.
Although N111215 had a “three-color” wavelength sep-
aration (λ24 = λ45,50 + 6.6 Å, λ30 = λ45,50 + 8.1 Å),
we use the “two-color” matrix coefficients ci,j detailed
in Appendix A that are valid for shot N110807 with
∆λ24 = ∆λ30 = 5.5 Å. The laser beams have as- fired
orientations (pointings); we do not attempt to model
beam bending [14].

The view factor model simulates a hohlraum with di-
mensions characteristic of the peak of the laser pulse.
The three-dimensional model is built in VisRad [12] and
consists of a cylindrical hohlraum and a capsule. The
hohlraum has a radius of 0.2575 cm, a length of 0.9425
cm and an LEH radius of 0.1685 cm. The hohlraum ra-
dius is 0.03 cm less than the nominal pre-shot radius of
0.2875 cm to simulate the motion of the inner hohlraum
wall by peak power. (Although in reality the wall motion
is not uniform, and the hohlraum distorts more locally
under the beam spots than elsewhere; to maintain cylin-
drical symmetry, we ignore this effect.) The hohlraum is
made of 40 axial and 48 azimuthal grid points, and the
end disks have 12 radial grid points. The capsule has a
radius of 0.08864 cm, which is 80 percent of the pre-shot
0.1108 cm, to simulate conditions at the early stages of
compression. The spherical capsule has 50 polar and 50
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azimuthal grid points and an albedo of 0.15. These reso-
lutions have been tested for convergence in resolving the
incident capsule flux up through the mode l=4 spherical
harmonics.

A. Crossed-Beam Transfer and Power Fluctuations

To investigate the role crossed-beam energy transfer
could have on random laser power fluctuations, we simu-
late via Monte Carlo sampling random variations in laser
quad powers about the mean N111215 peak power val-
ues. We assume Gaussian distributions characterized by
an initial standard deviation σ0

i for each quad i, so that
Si is sampled from a distribution around 1. Then, we
run each quad through the beam-coupling crossed-beam
energy transfer model and collect statistical info on the
distribution of post-transfer quad powers.

Quad i has a pre- and post-transfer fluctuation level

characterized by ∆0
i and ∆f

i . These levels are defined
as the standard deviation of the ensemble of powers nor-
malized to the ensemble’s mean:

∆0
i = σ0

i /P̄
0
i , (4)

∆f
i = σ0

i /P̄
f
i . (5)

The pre- and post-transfer average quad powers are P̄ 0
i

and P̄ f
i , respectively. Together, they describe the quad’s

average power transfer multiplier Ti
.
= P̄ f

i /P̄
0
i .

We let ∆0
i be the same for every quad in a simula-

tion (∆0
i = ∆0) and let ∆0 = [1, 2, . . . 5] percent. Each

of these 5 simulations consists of an ensemble of 5000
samples.

Figure 1 plots the post-transfer fluctuation amplitude

∆f
i , as calculated from the 5000-point ensemble for each

quad i in the five different simulations. Every quad obeys
the same rule, which relates the post-transfer fluctuation
amplitude to the pre-transfer fluctuation level:

∆f
i = ∆0/

√
Ti. (6)

Equation 6 quantifies how beam-to-beam coupling during
crossed-beam energy transfer alters a laser’s statistical
level of fluctuations. In particular, a quad’s response
depends on the amount of energy it gains or loses during
the energy transfer process. A consequence of Eq. 6 is
that as quads gain energy during transfer, their relative
fluctuation level actually decreases. The reverse is true
for quads that lose power during transfer.

Some algebraic consequences follow from Eq. 6.
Firstly, the absolute magnitude of the post-transfer fluc-
tuation level increases with the amount of power transfer:

σf
i = σ0

√
Ti. (7)

In other words, crossed-beam transfer causes both the
mean and variance of a laser quad’s power to be multi-
plied by the quad’s average transfer coefficient Ti:(

σf
i

)2
=
(
σ0
)2
Ti, (8)
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FIG. 1. Post-transfer fluctuation amplitudes for each quad
i, ∆f

i , plotted against ∆0
i /
√
Ti, where ∆0

i is the quad’s pre-
transfer fluctuation amplitude and Ti is the average power
multiplier on quad i due to energy transfer.

P̄ f
i = P̄ 0

i Ti. (9)

Using these rules and examining different sub-sets of
quads can inform how groups of cones and the entire
set of laser quads vary. Each cone ensemble follows a
rule that depends on the average cone transfer multiplier
Tcone:

∆f
cone = ∆0

cone/
√
Tcone, (10)

so that the inner cones’ fluctuation levels decrease and
the outer cones’ fluctuation levels increase. Using the

same numbers as in Table II at 19 ns, ∆f
30/∆

0
30 = 0.79,

but ∆f
45/∆

0
45 = 1.27. As an example, if all quads enter

the hohlraum with a 5 percent root-mean-square (rms)
fluctuation level, crossed-beam transfer will shrink the
30-degree quads’ distribution to about 4 percent, but in-
crease the 45-degree distribution to 6.4 percent.

The total fluctuation amplitude, as measured by the
ensemble of all laser quads can be calculated from the
average cone transfer coefficients:

∆f = ∆0
∑
cones

fcone√
Tcone

, (11)

where fcone is the fractional number of quads in a given
cone, ∆f is the total fluctuation amplitude of all quads
after transfer and ∆0 is the total fluctuation amplitude
of all quads before transfer. In particular, since one sixth
of the quads are 23.5-degree beams, (assuming up-down
symmetry), one sixth are 30-degree beams, one third are
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44.5-degree beams and one third are 50-degree beams,
the total post-transfer fluctuation level is:

∆f = ∆0

(
1

6
√
T24

+
1

6
√
T30

+
1

3
√
T45

+
1

3
√
T50

)
, (12)

where T24, T30, T45 and T50 are the average transfer
coefficients for each of the cones. As an example, con-
sider the transfer coefficients as in Table II at 19.0 ns
(1.49, 1.61, 0.62 and 0.82 for the 23.5-, 30-, 44.5-, and
50-degree beams respectively, corresponding to average
values calculated for NIF shot N110807 at a wavelength
separation ∆λ = 5.5 Å). Equation 12 calculates that
∆f/∆0 = 1.16. So if before transfer the laser beams
were sampled from within a 3 percent rms distribution
(which is the NIF Rev5 requirement during the peak of
the laser power [4]), after transfer they have a 3.5 per-
cent rms distribution. As shown above, individual cone
distributions can vary by much more, so that although
the inner quads have a more narrow distribution after
transfer, the more numerous outer quads weight the to-
tal ensemble towards a wider distribution after transfer
than before.

Since we assume that the coupling coefficients between
quads, ci,j , are constant, this model only considers the
alteration of fluctuation levels due to power fluctuations.
Certainly, if the local plasma conditions vary, which
they likely will for large amplitude fluctuations, ci,j may

change, and the 1/
√
T scaling may not hold. However,

this model does allow for predictions at different condi-
tions, if the cone transfer coefficients are known. For
instance, if the laser wavelength separation ∆λ changes
and modifies Tcone, ∆f

cone should still follow Eq. 11.

B. Dropping a Quad

Occasionally a NIF shot will operate without one or
more laser quads participating in a shot. When this oc-
curs, the “dropped quad” does not fire. Consequently, it
can neither give nor receive energy from crossed-beam
energy transfer. Therefore, dropping a quad changes
the incident capsule flux through two mechanisms: the
missing beam spot on the wall (where the dropped quad
would have deposited energy) and the altered energy in
the quads that would have transferred energy with the
dropped quad, if it were not dropped. Since the in-
ner quads primarily gain power during transfer, and the
outer quads primarily lose power during transfer, drop-
ping outer and inner quads are expected to alter the final
symmetry differently.

Figure 2 shows the change in incident capsule flux from
dropping quad 25T, which is a 44.5 degree outer quad,
by setting S25T = 0 in lasertram. The difference is
measured relative to the background case, in which no
quads are dropped. The flux over the entire capsule is
lower, due to the missing energy in the hohlraum: the
mean flux drive with the dropped quad is 97.5 percent of
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FIG. 2. The change in incident capsule flux when dropping
quad 25T as measured relative to the background case. 25T
is a 44.5 degree (outer) quad.

the baseline case. Additionally a large flux deficit lies on
the capsule directly beneath 25T. The magnitude of this
deficit is approximately 6 percent, but since the flux over
the whole capsule is lower, the peak-to-valley difference
is approximately 4.5 percent. Dropping an outer quad
creates a localized flux defect on the capsule and lowers
the overall capsule drive.
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FIG. 3. The change in incident capsule flux when dropping
quad 13T as measured relative to the background case. 13T
is a 30 degree (inner) quad.

The effects of a dropped inner quad are different. Fig-
ure 3 show the change in capsule incident flux from drop-
ping quad 13T, a 30 degree quad. Like the dropped outer
quad case, a localized flux deficit appears on the capsule
beneath the dropped quad’s beam spot location on the
hohlraum wall. It is not as large as the hole from drop-
ping 25T (approximately 2.5 percent). However, other
areas of the capsule are driven harder when dropping an
inner quad. In particular, a hot spot appears near the
north pole, due to an increased amount of flux in the
outer quads that give power to 13T during crossed-beam
energy transfer. Since 13T was dropped, this extra en-
ergy is stuck in those outer quads. The peak amplitude
of this hotspot is slightly above 2 percent, but more dif-
fuse than the localized cold spot beneath 13T, so that
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the total peak-to-valley flux perturbation is comparable
to that from dropping the outer quad.
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FIG. 4. The change in incident capsule flux when dropping
quad 25T at the hohlraum wall, after crossed-beam energy
transfer.

To illustrate the effects of nonlinear coupling between
beams during crossed-beam energy transfer, Figures 4
and 5 show the change in capsule flux relative to the base-
line case when removing the energy in 25T and 13T at
the hohlraum wall by zeroing out the laser beams in Vis-
Rad. As such, Figures 4 and 5 show only the geometrical
viewfactor effects of missing a quad. The flux deficit from
dropping 25T at the hohlraum wall is very similar to the
case when dropping the quad before crossed-beam energy
transfer, although the mean drive is slightly higher when
crossed-beam effects are not included (97.8 percent ver-
sus 97.5 percent). This is because when including energy
transfer, 25T transfers energy to inner quads, which then
lose a fraction of this energy via backscatter and impaired
propagation. But in general, including crossed-beam ef-
fects when calculating the flux deficit from dropping an
outer quad has a small effect on the change in capsule
drive.
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FIG. 5. The change in incident capsule flux when dropping
quad 13T at the hohlraum wall, after crossed-beam energy
transfer.

However, including crossed-beam coupling is much
more important when calculating the flux due to drop-
ping an inner quad. Figure 5 shows the change in capsule

incident flux when removing 13T at the wall. This purely
geometrical case shows a localized flux deficit beneath
13T of about 4.5 percent in peak amplitude. However,
unlike Figure 3, which includes the effects of crossed-
beam energy transfer, no capsule hot spots appear; the
drive on the capsule is lower everywhere. The salient
point is that when dropping an inner quad, both a hot
spot and a cold spot appear on the capsule, due to the
nonlinear coupling between quads during crossed-beam
energy transfer. The peak-to-valley amplitude of the cap-
sule flux is about 4.5 percent in both cases, but it is dis-
tributed differently on the capsule. And the mean drive
when including energy transfer is higher (100.6 percent
versus 98.7 percent).

It is interesting to note that dropping an inner quad
actually increases the mean drive on the capsule, because
the energy trapped in the outer quads is not depleted as
much by backscatter and absorption as it propagates to
the wall as it would have had it been transferred to the
missing inner quad. Dropping an inner quad alters the
shape of the incident drive, in this case the capsule is per-
turbed along the axial and equatorial directions. Not in-
cluding crossed-beam energy transfer would perturb the
drive only in the equatorial direction.

Dropping a quad creates a drive perturbation of about
4.5 percent in peak-to-valley amplitude. When dropping
an outer quad, this is a localized cold spot on the cap-
sule beneath the missing beams. When dropping an inner
quad, the perturbation appears not only as a cold spot
beneath the missing beams, but also as a hot spot be-
neath the beams that would have transferred energy to
the missing beam.

C. Compensating for a Dropped Quad

On occasion quads will be intentionally redirected
away from the hohlraum, for instance onto a backlighter
foil for radiographic imaging. Recently, experiments have
been fielded to use these techniques to image the in-flight
capsule shell [15, 16], the goal being to quantify and cor-
rect shell distortions.

A concern, however, is that the asymmetries intro-
duced by the missing backlighter beams would compro-
mise the measurement by altering the radiation field in-
side the hohlraum.

Figure 6a shows the change in incident capsule flux as
calculated by view factors from dropping the backlighter
quads in the axial 2D Convergent Ablator (ConA) Ex-
periment [16], which uses radiography to image the im-
ploding shell looking down the hohlraum axis from the
north pole. Uncompensated, the backlighter beams each
create a flux hole on the capsule southern hemisphere of
roughly 10%. View factor calculations (Figure 6b) sug-
gest that if the incident laser power at the hohlraum wall
can be increased by 20% in the 8 quads nearest to the
flux holes and by 10% in all other lower hemisphere outer
quads, the capsule flux perturbation can be reduced sig-
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FIG. 6. (a) The change in incident capsule flux when dropping the outer beam backlighter quads for the axial 2D conA
experiment at the wall. (b) The effect of increasing the 4 quads nearest to backlighter by 20% and increasing all other lower
outer quads by 10%.

nificantly, down to roughly one percent. More specifi-
cally, the scheme is to locate where on the hohlraum wall
a missing backlighter quad would have struck. The power
in the two quads on each side of that hole (4 total) are
increased at the wall by 20%. The same is done for the
other backlighter quad. All other lower hemisphere outer
quads are increased by 10% to help maintain the overall
up-down flux symmetry.

For the axial 2D ConA experiment, the backlighter
quads are Q14B and Q35B. Both are outer quads in the
lower hemisphere with a polar angle of 135.5 degrees.
The +20% “nearest neighbors” are Q11B, Q12B, Q13B,
Q22B, Q32B, Q34B, Q36B and Q45B. The remaining
+10% outer quads are Q23B, Q25B, Q26B, Q41B, Q43B
and Q46B. The goal is to increase the flux delivered by
these quads to the hohlraum wall by the specified values.

However, crossed-beam energy transfer complicates
the process. In our model, the power in a quad after

transfer P f
i depends on the power before transfer P 0

i :

P f
i = P 0

i +
∑
j

ci,j

√
P 0
i P

0
j . (13)

Consider increasing P 0
i to a new value P̂ 0

i by some small

amount ε, P̂ 0
i
.
= (1 + ε)P 0

i . Using Ti as the unperturbed

transfer coefficient Ti
.
= P f

i /P
0
i , Eq. 13 for P̂ 0

i , and a
little algebra shows how ε alters the post-transfer power:

P̂ f
i

P f
i

=
1 + ε−

√
1 + ε

Ti
+
√

1 + ε. (14)

In essence, Eq. 14, shows that for quads undergoing
transfer, the post-transfer power increase will not equal
the pre-transfer power increase. As an example, consider
a 30-degree quad with T = 1.6 (the average value for

∆λ = 5.5 Å). If ε = 0.1, Eq. 14 says that P̂ f = 1.08P f .
That is, increasing the pre-transfer power by 10% yields
a post-transfer power increase of only 8%.
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FIG. 7. The change in quad laser power after cross-beam
energy transfer for different transfer coefficients.

Figure 7 shows this effect for a range of input power
increases and for typical transfer coefficients. Outer
quads, whose transfer coefficient is less than one, see an
increase in post-transfer power relative to pre-transfer
power. Specifically, to increase the power after transfer
by 20% in 44.5-degree quads, with a transfer coefficient
of approximately 0.6, requires a pre-transfer increase of
only about 15%. 50-degree quads with a transfer coef-
ficient of 0.8 need an additional 17.5% power. This ef-
fect is beneficial, because it can relax the conditions on
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the laser to achieve a desired outer-beam flux increase at
the wall. (Incidentally, it also implies that compensation
with inner beams is likely to be less effective.)
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FIG. 8. Equatorial time-integrated self-emission contour for
NIF shots N130711 (solid) and N130425 (dashed). The 1.0
PSL x-ray contour corresponds to 17.3% of the maximum
brightness for the Kapton channel for N130711, approxi-
mately outlining the central hotspot. The view is on the equa-
tor, along angle (φ, θ) = (90, 78). As compared to N130425,
N130711 dropped two lower hemisphere quads for backlight-
ing, but employed the compensation scheme developed in the
main text.

Accomplishing the backlighter compensation scheme
in Figure 6b requires a consideration of this effect. To
increase the “nearest neighbor” 44.5(50)-degree quads
by 20% at the hohlraum wall requires a laser power in-
crease of 17.5(15)%. Similarly, the non-nearest neighbor
44.5(50)-degree quads need an additional 7.5(9)%. The
axial 2D ConA compensation scheme, therefore, involves
four families of quads: {Q23B, Q41B, Q46B}, {Q25B,
Q43B}, {Q11B, Q13B, Q34B, Q36B}, and {Q12B, Q22B,
Q32B, Q45B}, which are requested to have laser power
increases of 7.5, 9, 15 and 17.5%, respectively.

This backlighter compensation method was fielded on
the axial 2D ConA experiment, NIF shot N130711 [16].
Neither the in-flight radiograph nor the polar self-
emission images show evidence of localized distortions
from the missing backlighter quads; however, the equa-
torial hot-spot self-emission does show distortions in the
lower hemisphere, as compared to the symcap compan-
ion shot, N130425, which did not drop any quads for
backlighting. Figure 8 compares the 1.0 photostimulated
luminescence (PSL) x-ray self-emission brightness levels
as measured by the time-integrated Kapton channel for

the two shots. This brightness level corresponds to 17.3%
of the maximum value recorded for N130711 and roughly
outlines the central hotspot. The two shots have very
similar shapes in the upper hemisphere, but the shot with
the compensated dropped quads shows a distortion in the
lower hemisphere. This is to be expected from the flux
maps in Fig. 6b, which show two localized drive deficits
in the lower hemisphere of the capsule. N130711 shows
a hotspot distortion of around 30 percent, as compared
to the unperturbed case. Dividing this distortion by the
hotspot convergence ratio (27.5) gives an estimated flux
perturbation of 1.1 percent, consistent with the predicted
flux map for the compensation scheme in Fig. 6b.

Although NIF quads must be occasionally excluded
from a shot, it is possible to spatially compensate for their
absence, ameliorating their deleterious effects on capsule
shape. Crossed-beam energy transfer can enhance the
effects of outer-beam power increases, making their use
in compensation schemes less energetically taxing.

IV. DISCUSSION AND CONCLUSIONS

Laser-plasma interactions alter the power in a NIF
laser beam as it travels from the hohlraum laser entrance
hole to the hohlraum wall. The effects of these LPI pro-
cesses on capsule flux in the presence of experimental
laser fluctuations are largely unexplored. To that end,
we have built a code lasertram to model crossed-beam
energy transfer, backscatter and absorption and have ap-
plied the model to two experimentally relevant situations:
the dropping of a laser quad and random power fluctua-
tions.

When an outer quad is missing from an experiment,
the flux incident on the capsule is perturbed locally un-
derneath the missing beam spot on the hohlraum wall.
This perturbation appears as approximately a 4.5 percent
“cold spot” on the capsule, and the effect is mostly geo-
metrical, since including quad-to-quad crossed-beam en-
ergy transfer doesn’t significantly alter this picture. How-
ever, energy transfer plays a more important role when
dropping an inner quad, since the energy that would have
been transferred to the missing quad is trapped in other
quads. The result is the existence of not only a local-
ized cold spot, but also a hot spot under the quads with
the trapped energy. Each spot has a magnitude of ap-
proximately 2-2.5 percent, so that the peak-to-valley flux
difference is comparable to dropping an outer quad.

In either case, the perturbation on the capsule is likely
enough to impact the experiment, because radiation hy-
drodynamic simulations of capsules have shown signifi-
cant distortion and performance degradation under flux
asymmetries of a few percent [4, 17–19]. However, we
have shown that it is possible to spatially compensate
for missing quads, and that crossed-beam energy trans-
fer enhances the effectiveness of outer-beam quads in this
regard.

Crossed-beam energy transfer also alters the statisti-



8

cal properties of uncorrelated laser power fluctuations
in a manner that depends on the mean amount of en-
ergy transferred. If all laser beams enter the hohlraum
with the same statistical distribution, they will strike the
hohlraum wall with a different distribution. Quads that
gain energy during transfer will have a narrow distribu-
tion, and quads that lose energy will have a broader dis-
tribution. In other words, outer beams are expected to
strike the hohlraum wall with more random power varia-
tion than do inner quads. This process could have exper-
imental implications, since random laser power require-
ments assume that the distribution of laser energy does
not change while it propagates to the hohlraum wall. Fu-
ture work will involve determining the effect of these laser
fluctuations on the incident capsule flux.

Appendix A: Details on the lasertram Operators

Herein, we describe details on the different options for
the operators in lasertram that translate a vector of
initial laser powers into a vector of final powers.

The scaling operator S models as-delivered powered
fluctuations. It is a diagonal matrix, the components of
which can be specified on a per-quad or per-cone basis.
(A cone is a group of beams with the same incident angle
with respect to the hohlraum axis. NIF has 8 distinct
cones.) The operator S effectively multiplies the LEH
power by a given factor and can be used to study the
effects of as-delivered drive power.

A few different models exist in lasertram to repre-
sent the crossed-beam transfer operator, T . The sim-
plest method involves cone-specified multiplicative fac-
tors. Namely one can specify a scale factor Tk, where
the integer k ∈ {24, 30, 45, 50, 130, 135, 150, 156}
represents the approximate polar angle of the laser quad.
“Inner” beams have k of 24, 30, 150 or 156. The other
angles form the “outer” beams. Typical values of Tk
range from 1.6 − 1.8 for the inner cones and 0.6 − 0.8
for the outer cones. In other words, NIF generally oper-

ates within a regime whereby energy is transferred from
the outer cones to the inner cones. lasertram can also
specify Ti on an individual quad basis.

In lieu of manually setting the amplification factor of
all cones or beams, one can specify only inner cone factors
and reduce the outer cones to conserve energy. Let Pk

represent the total power in all of the quads in cone k
before applying crossed-beam transfer and let Pout be
the total power in the outer cones. Given T24 and T30,
we calculate Tout to conserve energy. Specifically, the
total power prior to transfer

Pout + P24 + P30 + P150 + P156, (A1)

should be equal to the total after transfer:

ToutPout + T24 (P24 + P156) + T30 (P30 + P150) . (A2)

For simplicity, we have assumed up-down symmetry on
the transfer coefficients. The transfer coefficient on the
outer cones can be determined by equating Eq. A1 and
Eq. A2:

Tout = 1+
(P24 + P156) (1− T24) + (P30 + P150) (1− T30)

Pout
.

(A3)
Eq. A3 is referred to as the energy-conserving inner am-
plification method.

The final method for crossed-beam energy transfer in-
corporated into lasertram is a one-dimensional integra-
tion model of quad-to-quad interactions. Quad transfers
are presently calculated on NIF by propagating individ-
ual quads through the three-dimensional LEH and deter-
mining each quad’s interaction with the other 23 quads
in its hemisphere. The intensity of each quad changes
as it propagates through this volume and interacts with
the other quads and the background plasma. As quad i
moves a distance δz along the hohlraum axis, its intensity
Ii changes from interactions with the other j quads:

Ii(x, y, z + δz) = Ii(x, y, z) + C

24∑
j=1

Ki,j(x, y, z)
√
Ii(x, y, z)Ij(x, y, z). (A4)

The coupling matrix Ki,j depends upon the plasma prop-
erties at the LEH and the relative geometries of the laser
quads. The square root dependence approximates satu-
rated energy transfer, valid at peak laser power. Inte-
grating over x and y and rewriting in terms of laser quad
powers yields an equation for saturated power transfer:

Pi(z + δz) = Pi(z) +

24∑
j=1

ci,j(z)
√
Pi(z)Pj(z). (A5)

The coupling coefficients ci,j can be extracted from a full
crossed-beam calculation by looking at the change in each
quad’s power during integration along the hohlraum axis,
∆Pi(z):

ci,j(z) =
∆Pi(z)√
Pi(z)Pj(z)

. (A6)

This method effectively decouples the quad powers from
the crossed-beam calculation. For a given set of ci,j and
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the same input powers Pi(z = 0), both the full crossed-
beam calculation and the reduced model, Eq. A5, should
calculate identical transfer coefficients. The implementa-
tion in lasertram takes as input a set of ci,j (as extracted
from a full crossed-beam calculation) and scaled powers

(S · ~P 0). To be explicit, the transfer coefficient for a quad
i can be written then as:

Ti =
Pi(z = Nzδz)

SiP 0
i

. (A7)

The final value of z, Nzδz, is calculated via numerical
integration. In practice, ci,j is a three-dimensional ma-
trix extracted from the full crossed-beam transfer code:
ci,j,k with dimensions [24, 24, Nz]. With δz assumed to
be unity, the numerical integration becomes a sum along
the third dimension.

Since full crossed-beam calculations only include laser
quads in the upper hemisphere (i = 1 . . . 24), we calcu-
late the lower hemisphere’s power by mapping ci,j from
an upper quad to a corresponding lower quad with the
same relative geometry, but calculate the lower quad’s
transfer using its input powers. This allows for upper
and lower quads to have potentially different transfer
coefficients due to variations in quad powers, but the
plasma conditions at the LEH and the geometric cou-
pling factors (which together determine ci,j) are assumed
up-down symmetric. As an example where this may be
useful, we consider the case of a dropped quad in the
upper hemisphere, that is Pi(z = 0) = 0. No quads will
transfer power with quad i; however, quads may continue
to transfer power with quad i’s mirror in the lower hemi-
sphere, i′, because Pi′ 6= 0, and we assume ci,j = ci′,j′ .

TABLE I. Cone-averaged crossed-beam energy transfer coef-
ficients for shot N110807 at 19.5 ns, as determined by the full
three-dimensional calculation (with ∆λ = 5.5 Å) and by the
reduced lasertram model.

Transfer Coefficient

Cone Angle Full Calculation Reduced Model % Error

23.5 degrees 1.5087 1.5100 0.09
30 degrees 1.6178 1.6220 0.26
44.5 degrees 0.6230 0.6224 0.10
50 degrees 0.8222 0.8204 0.22

To summarize, the one-dimensional crossed-beam
transfer calculation isolates the laser power dependency
from a crossed-beam energy transfer calculation. Other
effects are assumed to be captured in the coefficients ci,j ,
which are extracted from a higher-fidelity crossed-beam
transfer calculation. As such, the reduced model is de-
signed to agree with the full model when both are run
with the same conditions that generated the coupling
coefficients. This fidelity is displayed in Table I, which
compares the cone-averaged transfer coefficients for NIF

shot N110807 at 19.5 ns as determined by a full three-
dimensional calculation (corresponding to an inner-outer
wavelength separation ∆λ = 5.5) and by the reduced
one-dimensional model, using ci,j as extracted from the
full calculation.

The backscatter and absorption operators, respectively
B and A, are diagonal matrices that scale the post-
crossed-beam quad powers. One specifies as input the
fractional amount lost in each quad for these processes,
using either a uniform factor for all quads or different fac-
tors for each cone. Unlike the crossed-beam scale factors
Ti, which represent power multipliers, the backscatter
and absorption factors Bi and Ai represent loss fractions.
Each quad i is then multiplied by the factor (1 − Bi)
for backscatter and (1 − Ai) for absorption. It should
be noted that the energy lost by absorption represents
the energy required to ionize the hohlraum gas and sup-
port its albedo. Full radiation-hydrodynamic simulations
conserve this energy, but it does not appear as radiation
energy incident on the hohlraum that can re-radiate in
a directed fashion toward the capsule. Instead, this en-
ergy should be viewed as a volumetric source within the
hohlraum. Including this volumetric source alters the ef-
fective albedo of the hohlraum but does not appreciably
change symmetry. For the view factor calculations, we
will therefore consider the energy lost and pick an appro-
priate albedo.

Appendix B: Calibrating the Model

The strength of the lasertram model is in its flexibil-
ity: one can adjust the laser powers in a variety of meth-
ods. However, this is not without its limitations, because
the applicability of the model to NIF experiments relies
on a careful choice of these parameters. Here, we find a
set of input parameters that gives good agreement with
a three-dimensional radiation hydrodynamics simulation
of the hohlraum done with HYDRA [20].

To calibrate the model, we will adjust the crossed-
beam, backscatter and absorption parameters so that
a view factor calculation based on those parameters
matches calculations from a fully three-dimensional radi-
ation hydrodynamic simulation. We will tune our model
to NIF shot N110608 at three time points: 1.0 ns, 1.5
ns and 19 ns. These times correspond to the peak laser
power in the first picket, the peak radiation temperature
in the picket and the peak of the laser pulse. Specifically,
we aim to match the total power and fraction of power in
the inner cones after crossed-beam transfer and backscat-
ter, as well as the radiation temperature and wall emis-
sion ratio. Crossed-beam transfer and backscatter set-
tings (Tk and Bk) tune the first two parameters, without
the need to run a view factor calculation. The last two,
however, require a view factor calculation with an as-
sumed albedo and absorption losses. Since there are two
post-backscatter parameters to match, we will limit our-
selves to two adjustable absorption coefficients: one for
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the inner beams, and one for the outer beams. That is, we
tune Ain and Aout, with Ain = A24 = A30 = A156 = A150

and Aout = A45 = A50 = A130 = A135. Our view factor
calculations are done with VisRad, assuming an albedo
of 0.5 for t = 1.0, 1.5 ns and 0.9 for t = 19 ns.

To make the problem more tractable, we make some
experimentally motivated assumptions during the differ-
ent time points. At 1.0 and 1.5 ns we assume no backscat-
ter losses and adjust the inner cone transfer multipliers
(using the energy conserving method of Eq. A3 for the
outer cones) to match the post-backscatter cone frac-
tion. At 19.0 ns, we calculate crossed-beam transfer
with the one-dimensional model of Eq. A7, and adjust
the backscatter on the inner and outer cones to match
the total power and inner cone fraction. By assuming
a backscatter model in the picket and a crossed-beam
model in the peak, we restrict the number of adjustable
parameters to match the number of HYDRA-calculated
observables.

Tables II and III respectively show the calibrated
lasertram settings and measured observables from the
combination lasertram/Visrad view factor calculation
using those settings. Table III also shows HYDRA val-
ues for those observables and demonstrates that all four
observables (the post-backscatter laser power, the post-
backscatter inner cone fraction, the wall emission cone
fraction and the radiation temperature) lie within the
uncertainties of the HYDRA measurement.

The set of calibrated coefficients in Table II is not
unique; a number of other possibilities for crossed-beam,
backscatter and absorption exist that will give the same

match to HYDRA. In other words, the view factor calcu-
lation only needs the same amount of power in the inner
and outer cones to match the radiation temperature and
wall emission cone fraction. A set of lasertram param-
eters with the same total coupling to the wall (that is
the ratio of P f to P 0) as those of Table II will match
HYDRA just as well (because the input powers into the
view factor calculation will be identical). For instance,
one can accommodate the ansatz that at peak power the
outer cones experience no backscatter losses and the in-
ner cones lose 30 percent by maintaining (1−Bk)(1−Ak)
a constant. The tuned values in Table II show this con-
stant to be (1 − 0.25)(1 − 0.85) = 0.1125 for the inner
cones and 0.5775 for the outer cones. Asserting that
Bin = 0.3 and Bout = 0 requires setting Ain = 0.84
and Aout = 0.42. This backscatter ansatz is in agree-
ment with measurements of typical peak power backscat-
ter losses on NIF [21]. As such, we can say that only
about 15 percent of the post-backscatter energy makes
it to the hohlraum wall for the inner beams. For the
outer beams, this is closer to 60 percent. The remainder
goes into heating the hohlraum plasma and supporting
the wall’s albedo.
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